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Rotating charged dust in general relativity 
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Received 14 April 1980 

Abstract. The relativistic theory of axially symmetric, rotating charged dust is compared 
with the classical theory. The equations of motion are obtained from the field equations as 
compatibility conditions. It is proved that, if comoving coordinates are used for a rigid 
rotation in which the Lorentz force does not vanish, u / p  and gd4 are functions of the electric 
potential. Two new classes of exact solutions are obtained, one being the general solution 
for the case of rigid rotation with vanishing Lorentz force. 

1. Introduction 

Early work on rotating charged dust (Som and Raychaudhuri 1968, Banerjee and 
Banerji 1968) described cylindrically symmetric space-times in which the Lorentz force 
vanishes; these included some interesting variants on the Godel universe. At about the 
same time (De and Raychaudhuri 1968, Raychaudhuri and De 1970) some general 
theorems about flows of charged dust were discovered, and the electromagnetic version 
of the Raychaudhuri equation was formulated. 

In 1976, Banerjee et a1 showed that, in the case of stationary charged dust with 
vanishing Lorentz force, it is possible, by the use of comoving coordinates, to reduce the 
electric field to zero and have g44 = 1. It was also proved that, under a certain 
assumption, the ratio of charge to mass densities is an arbitrary constant, thereby 
correcting some previous work by other authors. 

In a series of papers, Islam (1977, 1978, 1979) has considered axially symmetric, 
rotating, charged dust, both from the classical and relativistic points of view. He has 
also derived some exact solutions in both theories. In this paper I shall follow the 
approach of Islam, at one point verifying the set of field equations he gave, which may 
be helpful as they are complicated. I shall also generalise some of his solutions. 

Space-times for rotating charged dust are interesting because they show the 
interplay of four fields-gravitation, rotation, electricity and magnetism. They also 
exhibit in an instructive way similarities and differences between the classical and 
relativistic theories. 

In Q 2 I develop the classical theory of charged dust and in § 3 I write down the field 
equations in the relativistic case. In § 4 the relativistic equations of motion are obtained 
from the field equations and compared with the classical ones obtained in § 2. § 5 sees 
the specialisation to rigid rotation, which is maintained in the remainder of the paper; 
with this specialisation the equations of motion simplify, and the space-times divide 
naturally into two classes according as the Lorentz force does not or does vanish. 
Sections 6 and 7 give some exact solutions in the relativistic theory, and there is a brief 
conclusion in § 8. The new results are to be found chiefly in §§ 4, 6 and 7. 

0305-4470/80/113465 + 13$01.50 @ 1980 The Institute of Physics 3465 



3466 W B Bonnor 

2. Charged dust in Newton-Maxwell theory 

The equations for rotating charged dust in Newton-Maxwell theory have been formu- 
lated and studied by Islam (1978). I shall rederive them briefly, as they will be useful for 
interpreting the relativistic results in $ §  4,6,7. The field will be assumed stationary, 
and symmetric about an axis Oz ; the constant of gravitation and the velocity of light will 
be taken as unity. Rectangular Cartesian coordinates will be used. All functions will, 
except where stated, be dependent on z and r ( = ( ~ ~ + y ~ ) " ~ )  only. 

It will be assumed that the dielectric constant and the magnetic permeability are 
both unity, so that only E and H (and not D and B )  appear in the equations. I shall also 
suppose that there is no longitudinal component of the current present, so that the 
azimuthal component of the magnetic field H vanishes. Thus the components of H and 
the electric field E will be taken as 

N = ( X r - l B ,  yr-'P, y )  

U = ( - y Q  xn, O), 

E = (xr-'X, yr-'X, v). (2.1) 

The velocity of the dust is 

(2.2) 

and we shall suppose that the dust carries the charge, so the current will be taken as 

J = V U  (2.3) 

where v is the charge density. 
The Maxwell equations for the stationary case are 

V . E = 4 r w  V x E = O  

V . H = O  Q x H = 4 r J ,  

and the Newtonian gravitational potential satisfies 

v2 v = 4 r p  (2.6) 

where p is the mass density. The equation of motion is 

u = - ~ V V + V ( E + U X H ) .  (2.7) 

From the second of equations (2.4) we may write 

E = - V 4  

where 4 is the electrostatic potential and satisfies 

V2d = - 4 r u  

because of the first of equations (2.4). Equations (2.5) first give 

(2.9) 

(2.10) 

and secondly, with the use of (2.3), 

(2.11) 
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Because of (2.10) we may introduce a function (I, by 

rp = a(I,/az ry = -a(I,/ar, (2.12) 

whence, from (2.11) 

v*'(I, = 4.rrr2un (2.13) 

where V*' = ( a 2 / d t 2 )  + (a2/ar2)  - ( l / r ) a / b r .  It follows that the gravitational, electric and 
magnetic fields are generated by the three potentials V, q5 and (I, satisfying (2.6), (2.9) 
and (2.13) respectively. 

It remains to be seen how these fields are restricted by the equation of motion (2.7). 
Using (2,1),  (2.2), (2.8) and (2.12) we find 

p(V-3n2r2),+u(4+R(I,) ,+(r2pn-(r(I,)n,  = O  (2.14) 

where a suffix a means differentiation with respect to z or r. We shall be concerned in 
the rest of this section with rigid rotations, i.e. with 0 = constant (# 0) .  Since we are 
interested in the motion of charged dust, we shall suppose p # 0 ,  U # 0 exceptpossibly at 
isolated points. 

It is convenient to divide the treatment of (2.14) into two cases, I and 11, according as 
q5 +n(I, is not, or is constant. 

( a )  Case I. q5 +a$ # constant: 

V-4n2r2=H(4++(I,) and pH'+u=O (2.15) 

where H is a (non-constant) function of 4 + n(I, and a prime means differentiation with 
respect to this argument. Of particular interest is the sub-case in which H is a linear 
function of its argument. 

( b )  Case I ( a ) .  

v -+Ji2r2 = n ( 4  +o$) ( 2 . 1 6 ~ )  

n p + u = O  (2.16b) 

where n is a constant so that the ratio of the charge to mass density u / p  is constant. 
Taking the Laplacian of (2.16a),  and using (2.6), (2.9), (2.13) and (2.16b), we get 

nCi2(1 +r-lO-ln+r) 
2.rr(n2-1-n r n )  cT= 2 2  2 (2.17) 

where (I,r means a(I,/ar. It is convenient to introduce a new magnetic potential 

a := (I, ++n-'r2n (2.18) 

(so that a satisfies (2.13) if (I, does) which reduces (2.17) to 

n  la, 
2.rrr(n2-1-n r 0 1  U =  2 2  2 .  (2.19) 

This corresponds physically to introducing a uniform magnetic field parallel to the z axis 
which gives a term in (2.14) balancing the centrifugal force. Reverting to (2.13) and 
substituting for (I, from (2.18) and for U from (2.19) we obtain a differential equation for 
a: 

n 2  - 1 + n2r2R2 
r ( n 2 - l - n  r n )  a z z  +arr-ar- 2 2 2 = o *  (2.20) 
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n and R are free parameters and once they are fixed, a obtained from (2.20) determines 
the entire solution for case I (a)  provided suitable boundary conditions are specified on 
V and 4. 

Notice that if n2 = 1 (2.20) reduces to a Laplace equation, and the charge and mass 
densities are numerically equal. The purely electrostatic instance of this case is well 
known, but here the interpretation is less transparent because of the magnetic field; in 
particular the charge density has to satisfy a differential equation (obtained by eli- 
minating a between (2.19) and (2.20)) and is not arbitrary as in the electrostatic case. 

( c )  Case II. The Lorentz force vanishes: i.e. the bracket in the second term on the 
right of (2.7) is zero. Since R is constant, this means that 

4 +R$ = constant, (2.21) 

v = $&r2 + v0 ( Vo constant) (2.22) 

so, from (2.14), 

and thence from (2.6) 

2wp = R2. (2.23) 

Since the electromagnetic field exerts no force on the matter the centrifugal force must 
be balanced purely by gravitation, as expressed in (2.23). Taking the Laplacian of 
(2.21) and using (2.13) we obtain 

(T = [2wr(1- r 2 ~ 2 ) ] - ' ~ 4 r ,  (2.24) 

and substituting for U from (2.24) into (2.13) we find 

(2.25) 

Given 0, a solution 4 of this equation determines U from (2.24) and 4 from (2.21). p is 
obtained from (2.23), irrespective of 4. 

By way of illustration, and later comparison with a relativistic solution, we choose 
the simple solution of (2.25), 

$ = L ln(1- + M  (2.26) 

where L and M are constants. This is the only one corresponding to a purely 
longitudinal, (but non-uniform) magnetic field. The charge density, obtained from 
(2.24), is given by 

-La3 
w(1-r R ) U =  2 2 2 .  (2.27) 

The gravitational potential and mass density are given by (2.22) and (2.23). The 
solution has a singularity where r2R2 = 1, that is, where the speed of the rotating dust 
becomes equal to that of light. 

3. The equations for charged dust in general relativity 

The Einstein-Maxwell equations for charged dust are 

R: -$8:R 8rpUiUk +2FiaFka -$8:FabFab 
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f l k  = A i , k  -Ak,i 

Fikk = 4 r J i  

where Rik denotes the Ricci tensor of the space-time with metric g i k ,  defined by 

(3.2) 

(3.3) 

Rik 

p is the matter density, u i  the unit four-velocity vector of the dust (uiui = l), f l k  the 
electromagnetic field tensor, Ai the vector potential and J’ the current density; a 
comma denotes partial differentiation and a semicolon covariant differentiation. 

We suppose that the axially symmetric stationary metric is 

ds2= -e”(dzz+dr2)-ld82-2md6dt+fdtZ (3.4) 

where ,U, I, m and f are functions of z and r only. The coordinates will be numbered 

(3.5) 
1 2 3 4 x = z  x = r  x = e  x =t .  

I shall assume that the dust is steadily rotating, which means I shall take 

U ’  = (0, 0, u3 ,  u 4 )  Ai = (090, $3 4 )  J’ = (0, 0, J 3 ,  J4), (3.6) 

all these qualities being functions of z and r only. By doing this I exclude axially 
symmetric, stationary space-times which have motion and currents parallel to Oz. 

Let 

A’ = I f  + m 2 ;  (3.7) 

then we find the field equations (3.1) that 

R : + R : = - A P 1  e-”(All+A22)=0,  (3.8) 

where suffices 1 and 2 mean a lax ’  and a/ax2. Assuming A to be a monotonically 
increasing function of r, we may, without loss of generality (Synge 1960), take the 
-solution of (3.8) to be 

A = r  (3.9) 

I f +  m 2  = r2.  (3.10) 

With A chosen as in (3.9), and with assumptions (3.6), the remaining equations (3.1) 

(3.1 1) 

so that 

can be written in terms of the linear combinations 

R l l  + RZ2 = p11 + , ~ 2 ~  + 2f ( f  1 +f;) - r-’f-’f2 - ir-2f2(w: + wg)= - 87r e”p 1 -2  2 

1 -2 2 1 -2 2 R11 - R z z ~ r - ’ ( , U Z + f - ’ f z ) + ~ f  ( f l  - - f ; ) + ~  f (d- w:)  

~ ~ ~ ~ ~ - ~ ~ ~ ~ , ~ ~ + f ~ ~ f ~ ~ + f ~ ~ f ~ f ~ - ~ ~ ~ f ~ ~ ~ ~ ~ = ~ ~ ~ ~ ~ 1 4 ~ 4 ~ - f $ ~ + ~ - m ~ 4 ~ ~ ~ + 4 ~ + ~ ~ 1  

R:- R: - 2 w R : r  f - ’  e-”[-V2f + f - ’ ( f :  +fg) -r-’f3(w:+ w2)l 

= 2 r - ’ [ f ( & - + 3 +  1(4:-422)+2m(~z$z-~l+l)I  (3.12) 

(3.13) 

= -2r-’ e-”[f-’(r2+m2)(~T+~22)+2m(41J11+~2$2)+f($:++22)I 

+ 8 r p ( u 3 u 3  - u4u4+ 2wu3u4) (3.14) 
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2R:z - rT2 e-’* [f2V*2W +2f(flWl +fiWZ)l 
=4r-2 e-”[m(4:+4~)+f(41$1+42lCl2)1- 1 6 ~ ~ ~ ~ 4  (3.15) 

where I have put 

w = mf-’ (3.16) 

v ~ x = x ~ ~ + x ~ ~ + ~ - ~ x ~  (3.17) 

V”’X = x ~ ~ + x ~ ~ - ~ - ~ x ~ .  (3.18) 

The second set of Maxwell equations, (3.3), gives 

(3.19) 

(3.20) 

The equations (3.11)-(3,15) and (3.19)-(3.20) agree with those given by Islam 

(i) Islam takes the opposite sign for Rik expressed in terms of the r’s; 
(ii) in this paper u 3  and J 3 ,  and in Islam’s 0 and J 3 ,  must be put to zero; 
(iii) correction is required of the following trivial misprints in Islam’s paper: in the 

last term of ( 2 0 4 ,  insert T ;  insert a minus sign on the right-hand side of (21a). 
If p and J’ are put tozero, equations (3.11)-(3.15) and (3.19)-(3.20) reduce to those 

for the stationary, axially symmetric electromagnetic field, which have been studied by 
many authors, and of which many solutions are known. (For a summary see Kinnersley 
1974.) W e  shall henceforth assume, as  in § 2 that p # 0, J‘ # 0 except a t  isolated points. 

The structure of the equations, is as follows. If we regard (3.12) and (3.13) as 
determining p2 and p l  in terms of the remaining quantities, the three equations 
(3.11)-(3.13) give two compatibility equations, arising from p12 = pzl ,  and from the 
condition that pll  + pZ2 shall satisfy (3.1 1). If the compatibility equations, which, as we 
shall see, correspond to the equations of motion of the dust, are satisfied, p can be 
determined up to an additive constant. The remaining equations (3.14), (3.15), (3.19) 
and (3.20) are four equations for four potentials f, m (or w), #I and $ in terms of the four 
source functions p, J 3 ,  J4 and u 3 / u 4 .  These functions are restricted by the equations of 
motion, and will be further restricted by assumptions we shall make ((4.6) and (5.1)). 

2 ’ * 3  fV2$ + mV”4 + f1+h1 + f24h2 + ml& + m242 = 4 r r  e J 

mQ”$ - 1V24 + ml$l + mzlCl2 - 1 1 ~ 1  - 1242 = 4 ~ r  e J 2 I*. 4. 

(1977; (20a)-(20e) and (21a)-(21b)) subject to the following remarks: 

4. The compatibility conditions 

It will be convenient to introduce the angular velocity R by 

(4.1) 3 4 U = R u ,  

whence, recalling that U ‘ is a time-like unit vector, we have 

(4.2) 

here, and throughout the paper, where a square root is shown, the positive value is to be 
taken. 

Using (3.12) and (3.13) to form p21= p 1 2 ,  we find after a long calculation in which 
(3.14), (3.15), (3.19) and (3.20) are used that 

U 4 = ( f - 2 m ~ - 1 ~ )  2 -1/2 ; 

p(fl-2m,0-llR2)(U4)2+2($lJ3+6)1J4) = 0. (4.3) 
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A similar long calculation, in which we substitute for p l l  and p 2 2  in (3.11), gives 

p ( f 2  - 2 m 2 ~  - I ~ R ~ ) ( u ~ ) ) ’  + 2(11/2~3 + 4 2 ~ 4 )  = 0. 

pu ‘;ku = JkFki. (4.5) 

(4.4) 

Equations (4.3) and (4.4) together form the equation of motion for the charged dust: 

Provided we ensure that (4.3) and (4.4) are satisfied we can ignore the field equations 
(3.11)-(3.13) except for the purpose of finding p by quadratures. Hence the complete 
solution depends essentially on the four quantities f ,  m,  4 and 9 obtained by solving 
equations (3.14), (3.15), (3.19) and (3.20). 

I shall suppose from now on (as in P 2) that the dust carries the charge, so that the 
four-current arises from the charge density (+ moving with velocity U ’ :  

J’ = uu’. (4.6) 

F = ( f  - 2 m R - la2) 
Then, putting 

(4.7) 

and using (4.3) and (4.4), we obtain the equations of motion 

p(F1”), + (+(4 + Cl@), + i la[pF-1/2(m + In) -all/] = 0 (4.8) 

where a = 1, 2. An equivalent equation was obtained by Islam (1977). This equation is 
strictly comparable with the classical equation (2.14), as I now show. 

First recall that in static weak fields g44 is approximately 1 + 2 V, where V is the 
gravitational potential, supposed much less than 1 ; assume that this applies to f in (3.4) 
and suppose that the terms 2mR and 1R2 in (4.7) are much less than 1. Then, using 
(3.10), we find 

F’/’ - 1 + v - m a  - ir2R2. 

Neglecting second-order terms like V2,  V m R ,  m2R2,  etc., equation (4.8) now gives 

1 2  2 p ( v -  mR--Zr R 1, + a(4 +all/), +R,[p(m + r2R) -(++I] = 0,  

where further small terms are neglected. This is the same as tfie classical (2.14) if we 
neglect m. 

The presence of the function m is the main difference from the classical theory in the 
stationary axially symmetric case: m is related to the gravitational vector potential 
(M~l l e r  1972) given in general by 

Ka = gar4(g44)-’” (a = 1 ,2 ,3 ) ,  (4.9) 

which has no analogue in Newtonian mechanics. In stationary, axially symmetric 
space-times K ,  reduces to one component, - wf ‘I2 in our notation, which gives rise to 
one extra field equation (3.15), as well as to extra terms in the other equations. 

Special cases of equation of motion (4.8) can be treated as for the Newtonian 
equation (2.14). However, it will be more convenient to deal with them after making, in 
the next section, a coordinate transformation allowed to us in the relativistic theory. 
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5. Rigidly rotating dust 

Henceforth I shall suppose that the dust rotates rigidly, i.e. that 

O = constant. (5.1) 

f i3=o  i i = O  

It follows at once from (4.1) that the transformation Z = 2, T = r, 8 = 8 - Ot, 7 = t makes 

without affecting the form (3.4) of the metric, or the forms of Ai and J ’  in (3.6). From 
now on we shall suppose this done, and put 

F=f, (5.2) U 3 = o  O=O u 4  = f-w 

the last two being a consequence of (4.2) and (4.7). The equation of motion (4.8) 
becomes 

p (f l12)a + 4 7  = 0 ,  (5.3) 
and we can apply to this a classification similar to that used on (2.14). 

( a )  Case I. 4 # constant. This leads to 

f =f(4) 
p(f112)’+u = 0 

where a prime means a differentiation with respect to 4. 
( b )  Case ~ ( a ) .  f’” is a linear function of its argument so 

f112 = n4 + B p n + u = O  (5.6) 

where n is a constant. In this case the ratio of charge to mass density is constant. Since 4 
and I,4 appear in the field equations only through their derivatives, they are undeter- 
mined up to arbitrary constants which may be used to eliminate B.  Hence we shall write 

f = n 2 + 2 .  (5,.7) 

( c )  Case II. The Lorentz force vanishes: i.e. the term (4 +a$) in (4.8) is constant, 
which in view of (5.2) reduces to 

4 =constant. ( 5 . 8 )  

Equation (5.3) now requires f to be constant and by a scale charge of the time 
coordinate we may take 

f = 1 .  (5 .9 )  

These results can conveniently be written as a theorem. 

Theorem. Consider a space-time interior composed of axially symmetric, sta- 
tionary, rigidly rotating charged dust in comoving coordinates and satisfying (3.6). Then 

( a )  if the Lorentz force does not vanish, u / p  and g44 are functions of the electric 
potential 4 ;  

( b )  in the special case in which u / p  is a constant, -n,  then g44 = n 2 + 2 ;  
(c) if the Lorentz force vanishes, g44 and 4 are constant. 

All the parts of this theorem have been discovered before, or are implicit in previous 
work, but it seemed to me worthwhile to collect and prove them together. Part ( a )  can 
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be obtained from the paper by Das and Kloster (1977), though they did not derive it 
because their interest was somewhat different; part (b) was proved by Islam (1978) and 
(c) by Banerjee et a1 (1976). 

6. Solutions when the Lorentz force vanishes 

Using (5.8) and (5.9), we find that the equations (3.13), (3.14), (3.19) and (3.20) reduce 
to 

v*2w = 0 ( 6 . 1 ~ )  

v*2* = 0 (6.16) 

8 ~ p + 2 r - ~ e - ” ( t , b ? + & )  =r-2e-p(w?+ w;), (6.2) 

4 ~ c 7  = r-’ e-”(wlrl/l + ~ ~ r l / ~ ) .  (6.3) 

p can be obtained by integrating (3.12) and (3.13) when w and 1+9 have been chosen. 
Equations (6.1) can be reduced to Laplace equations by substitutions of the form 

w = rq2 
which gives 

a 
ar 

V*’W = r- (v2q) (6.4) 

so V*’w = 0 if 77 is a harmonic function?. A similar procedure may be used for 1+9 so we 
see that our solution depends on two harmonic functions. I t  is the general solution for 
vanishing Lorentz force. The solution of Islam (1977) is a special case obtained by 
taking w a constant multiple of I), and solutions of this type were also obtained by 
Kloster and Das (1977). For this special case u / p  is constant, but this is not generally so. 

There is evidently an analogy between this class of solutions and that of case I1 in P 2. 
The correspondence can be seen between the equations for the magnetic potentials 
(6.16) and (2.25), between the mass densities (6.2) and (2.23), and between the charge 
densities (6.3) and (2.24). There is no Newtonian analogue of the equation ( 6 . 1 ~ )  for 
the gravitational vector potential component. Equation (6.2) is interesting: the 
magnetic energy (second term on the left) is added to the mass density in balancing the 
rotation terms on the right. 

As a simple example of the relativistic solution we can take the case in which both w 
and $ are proportional to r2: 

(kl, kz constant). 

These satisfy (6.1). The remaining quantities are found to be 

2 w = klr2 t,b = k2r 

p = (4k: - k:)rz 
p = T - l e - ”  (&i-k:) 1 2 

-1 u=T e-”klk2. 

This solution was first obtained by Som and Raychaudhuri (1968). It has cylindrical 
symmetry and only a longitudinal magnetic field; it corresponds with the classical 
solution generated by (2.26), but is somewhat simpler! 

i. To the harmonic function can be added an aribtrary function of z, but this produces no addition to w. 
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7. Solutions when the Lorentz force is not zero 

In this case we know from (5.6) and (5.7) that f ,  the scalar gravitational potential, is a 
function of the electric scalar potential 4. As an ansatz to find a solution, we shall try 
making the gravitational vector potential (4.9) a function of the magnetic vector 
potential. In our case this means supposing 

W f 1 l Z  = g (I(/). (7.1) 
This does lead to a simplification for certain functions f (4 )  and g(I(/), as we shall see. 

8.ire”fp =f’v24 +(f’-f-1f”+tr-2g’f’2- 2r-2fg2-2)(4?+43 

Using (5.2), (5.4) and (7.1) in (3.14), we obtain 

- r-’fg(f’g +W’~411(/1 + 4242) + r-’f’(g’ -NI(/? + CL;) (7.2) 
where a dot means d/d@ 

(7.1), and obtain 

2.rr e”f’p = v’+ + (&’g2 -fP1)f’(4; + 4;) 

Next we multiply (3.19) by m and substract (3.20) multiplied by f, use (5.4) and 

- r-’fg(g --i~f-~”)(+11(/1+ +’I(/’) - r - 2 f 3 / 2 g ( ~ ? +  I(/:). (7.3) 

We now multiply (7.2) by f’ and (7.3) by 4f and subtract, so eliminatingp and obtaining 

0 = ( Y 2  -4f)V24 +f’(f”-f”f’’+~r-’g’f’’+ 2 -4r-’fg2)(4?+ $22) 
- r-’fg(f28 +4f’f’/’- 4gf+ 2f’f1/2)(411(/1 + 4 2 4 ~ 2 )  

+ r-’f’(f’g’ - 2 7  + 4f1/’i)(4j? + I(/:). (7.4) 
As we shall see shortly, a simplification will come from a special choice off  and g. 

We carry out similar operations on (3.15), getting 

and on (3.19) with the result 

fv*’I(/ + f1/2gV*2f#l +;f-1/2f’g(4:+ 4;) + (f’ +f1’2$j)(41$1 + 4 2 4 2 )  = 0. (7.6) 

We now eliminate V*’$ between (7.5) and (7.6), obtaining 

(7.7) 

There are now two differential equations containing 411 +&.’, namely (7.4) and (7.7). 
We could proceed if the functionsf(+) and g(I(/) could be chosen so that they reduced to 
the same equation, but this does not seem to be possible. However, we can by a suitable 
choice off  and g make (7.7) vanish identically, leaving (7.4) as the sole equation for 4. 
The appropriate choice is 

f 1 k  - 2 4  g = 2E*, E4=--I4l9 (7.8) 
so that E is +1 or - 1 according as 4 is negative or positive. We assume 4 # 0 to avoid a 
zero in f ,  which would lead to a singularity in u i  (see (5.2)). 
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Using (7.8) we find that (7.4) reduces to 

4v24 -(&+422) = 0 

V2(1n 4 )  = 0. 

which is equivalent to 

(7.9) 

(7.10) 

The function m in the metric is given by 

m = - 4414, (7.11) 

and satisfies, because of (7.6) and (7.8), 

4 2 v 8 2  14-~14v*24-14(4~+4~)+4(41141+42142) =o. (7.12) 

It is convenient to reinstate w = -4- '$;  equation (7.12) is found to be equivalent to 

V*'W +34-'(41Wl + 4 2 W 2 ) = 0 .  (7.13) 

Now write this as 

showing that there exists a function Y(z ,  r )  such that 

r - 1 ~ 1 4 3  = y2 

v2Y-3f$-1(41Yl+42Y2)=o. 

r - 1 ~ 2 4 3 =  - Y,, 

and, because w12 = wzl ,  satisfying 

(7.14) 

(7.15) 

Y is somewhat similar to the twist potential used in the solution of the stationary 
electrovacuum case. The mass density is given by either (7.2) or (7.3) in the form 

(7.16) 

the physical interpretation of which being that the total density of energy (including the 
electromagnetic energy represented by the second term on the left) is balanced by the 
rotation terms on the right. The ratio of charge to mass density is 

a l p  = 2 E  (7.17) 

from (5.6) and (7.8). p can be obtained from (3.12) and (3.13) and may be expressed in 
the form 

(7.18) 

To sum up, a solution is obtained by choosing a harmonic function for In 4 and then 
solving the linear second-order partial differential equation (7.13) for w, which is 
equivalent to (7.15) for Y. I) is then obtained from $= - w4, f fmfpl(7.8), p and U from 
(7.16) and (7.17) and p from (7.18). 

.rrp - 1 - ( 4 4 ) - ~ ( 4 : + 4 3  e-& = 4 - ' ( ~ ? +  Y;)  e-&, 

(CL + l n f ) l =  3 ~ ~ 4 1 4 2  ( C L  + In f ) z  = 34-2(& - 43. 

If in (7.15) we require that Y be a function of 4 we obtain 

Y = K 4 3 + K * ,  (7.19) 

K and K" being constants, of which the latter may be put zero because Y enters the 
solution only through its derivatives. From (7.14) we can obtain w by integrating 

w1 = 3rK4- '42 w2= - 3 r ~ 4 - ' 4 1  (7.20) 
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for any 4 which satisfies (7 .10) .  This procedure gives a class of solutions of the problem 
depending on one harmonic function (In c$), an arbitrary constant K ,  and a further 
arbitrary constant obtained on integrating (7 .20) .  

Using (7 .20)  we can obtain solutions regular near the origin of coordinates. For 
example, choosing 

In 4 = c ( 2 z 2 - r 2 )  (7.21) 

where C is a constant, we find by integrating (7 .19)  

w = - 6 K r 2 z  (7 .22)  

ignoring an additive constant to avoid a singularity on the rotation axis. I), p, p and cr 
are easily obtained and the solution is found to be non-singular for the finite part of 
space-time. Thus it could serve as an interior solution if a suitable exterior could be 
found. 

The solution is not, of course, the only one corresponding to the harmonic func- 
tion (7 .21) .  Indeed we can, instead of assuming Y to be of form (7 .19) ,  write it as 
Y = Z ( z ) R ( r ) ,  and separate the variables in (7 .15) .  In this way we obtain a more 
general solution, showing that the prescription of the electric field, as in (7 .21) ,  does not 
determine w and I). 

Similarly, if one prescribes the cylindrically symmetric solution of ( 7 .  l o ) ,  namely 

4 = A r "  (7 .23)  

where A, n are constants, there is much freedom in the choice of w.  One may take w 
also to be a function of r only (Islam 1978),  but any solution of (7 .13)  which, with (7 .23) ,  
becomes 

w l l +  w22+(3n - l ) r - * w 2 = 0  

is allowable. The class of solutions (7 .19)  makes w a function of z only. However, all 
these cylindrical solutions are singular because, by (7 .8 ) ,  f vanishes or diverges on r = 0. 

There is no close analogy with the corresponding classical case (case I ( a )  of Q 2 ) .  Nor 
is it apparent why the particular charge to mass ratio u/p = f 2 should give rise to a 
solution in the relativistic case. Presumably the very weak coupling of the electric to the 
magnetic (or rotation) field is connected with this special ratio. 

8. Conclusion 

The equations of motion for stationary, axially symmetric charged dust are similar in the 
classical and relativistic theories (equations (2 .14)  and (4 .8 ) ) .  The main difference is the 
presence in the latter theory of m, which corresponds to the gravitational vector 
potential. This is also apparent in the field equations: in the classical theory there are 
three potentials, V, 4 and I); but in relativity there are four, f (corresponding to V), r$,$ 

and m (or w). 
The exact solutions derived in this paper apply to rigidly rotating dust. In both 

theories they conveniently divide into two classes, according as the Lorentz force does 
not or does vanish. In the second class the general solution in the classical case is 
generated by a solution of (2 .25) ,  and in the relativistic case it depends on two harmonic 
equations (6 .1 ) .  There is a noticeable similarity between solutions in the two theories. 
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In the first class one can in the classical theory obtain a linear equation (2.20) for a 
function which will generate the solution. In the relativistic theory the situation is much 
more complicated, and only a limited class of solutions, depending on one harmonic 
equation (7.10) and two constants, was obtained. The class has charge/mass density 
ratio of l t 2 ,  and it would be interesting to know why a simple solution is obtainable in 
this special case. 
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